
This is a repository copy of DIVIDER: Modelling and Evaluating Real-Time Service-
Oriented Cyberphysical Co-Simulations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/88804/

Version: Accepted Version

Proceedings Paper:
Mckee, DW, Webster, D, Xu, J et al. (1 more author) (2015) DIVIDER: Modelling and
Evaluating Real-Time Service-Oriented Cyberphysical Co-Simulations. In: Proceedings of
2015 IEEE 18th International Symposium on Real-Time Distributed Computing (ISORC).
Real-Time Distributed Computing (ISORC), 2015 IEEE 18th International Symposium on,
13-17 Apr 2015, Auckland, New Zealand. IEEE , 272 - 275.

https://doi.org/10.1109/ISORC.2015.30

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

DIVIDER: Modelling and Evaluating Real-Time Service-Oriented Cyberphysical

Co-Simulations

David McKee, David Webster, Jie Xu

School of Computing,

University of Leeds

Leeds, UK

{scdwm , D.E.Webster, J.Xu}@leeds.ac.uk

David Battersby

Jaguar Land Rover

Gaydon, UK

dbatters@jaguarlandrover.com

Abstract—The ability to reliably distribute simulations across a

distributed system and seamlessly integrate them as a

workflow regardless of their level of abstraction is critical to

improving the quality of product manufacturing. This paper

presents the DIVIDER architecture for managing and

maintaining real-time performance simulations integrated

through SOAs. The described approach captures features

present in complex workflow patterns such as asynchronous

arbitrary cycles and estimates the worst case execution time in

the context of the interfering execution environment.

Keywords-real-time;SOA;workflow,automotive;integration;

performance interference

I. INTRODUCTION

The capability to perform reduced physical prototyping
and automation in manufacturing industries is critical as
industries seek to reduce the time moving through each
engineering phase [1]. An example of prototyping is the
integration of electrical control units of automotive sub-
systems with hardware-in-the-loop simulation [2]. A second
example is human (or driver)-in-the-loop (DIL) systems that
integrate the control unit models with driving profiles [3].
The rapid integration of simulation models with DIL systems
or HIL test-benches remains a challenge.

Service-Oriented Architectures (SOA) have been
demonstrated to support system dependability characteristics
[4], [5] when integrating distributed systems through the
likes of ultra-late binding whereby a service is bound ‘just in
time’. Discrete event simulation (DES) technologies such as
DDS and HLA use federated approaches which lack the
ability to assure the delivery of real-time capability for a
given service.

In response to this need for rapid automotive simulation

integration we propose DIVIDER, a novel Service-Oriented
integration architecture enabling the dynamic integration of
heterogeneous tools and models, with real-time performance.
Adherence to strict real-time deadlines is achieved by
formally modelling the simulation workflows, the data
exchange patterns, and the underlying resource
characteristics of the execution platforms.

We present an automotive use case in section II. In
section III we demonstrate this as a service oriented problem
and modelled the performance with respect to the underlying
network infrastructure. We demonstrate our implementation
using the automotive scenario in section IV. Finally we
present our conclusions and future work in section V.

II. MOTIVATION FOR INTEGRATED SIMULATION

In the automotive industry the process of designing,
testing, and manufacturing vehicles is known to take up to 7
years [6] in part due to limited capability for traversing the
levels of abstraction seen in engineering lifecycle phases. In
this section we discuss a motivating scenario, consider the
challenges of co-simulation, and the related work in real-
time (RT)-SOA techniques with emphasis on real-time
workflows for system integration.

A. Motivating Scenario

Figure 1 depicts a transmission system of a vehicle
consisting of several components at different abstractions:

1. Engine and transmission modelled in Simulink.
2. Transmission control unit using HIL technologies.
3. Vehicle dynamics as DIL behavior using TORCS [7].

The transmission control unit (TCU) and the vehicle
dynamics run asynchronously from the remainder of the
system with their own control loops. We control the clock

Figure 1: Motivating Scenario Simulating a Transmission Control System

rate of the later, but the TCU runs relative to ‘wall’ clock.
If we were to assume that each system component takes

the same amount of time to execute, the following simple
workflow of simulation communications would be observed:

 Vehicle dynamics →Transmission and TCU

 Engine →Transmission

 Transmission → Vehicle dynamics

If the constraint of discrete events is removed, as is the
case with HIL and DIL components, each of the above
communications may occur at differing times.

B. The Challenge of Real-time Co-Simulation with SOA

Current work in RT-SOA has demonstrated that SOA
cannot guarantee real-time deadlines subject to following
key limitations [4], [8]:

 A lack of complete modelling of the execution
environment results in delayed executions and
longtails [9]. A preconfigured environment has been
modeled, but not its runtime changes [10].

 Current techniques react to performance degradations
without knowledge of the environment [11].

 Approaches such as the iLand project [12] address
aspects related to composition the approach is limited
to dealing with soft real-time deadlines.

These and other RT-SOA techniques demonstrate that there
is still an unresolved research challenge in addressing hard
real-time deadlines with SOA lacking sufficient support for
the domain of co-simulation.

When using DES for controlling communication between
real-time simulations the responsibility of managing
execution time with respect to wall clock is the responsibility
of the federate rather than the infrastructure [13]. DES
approaches describe real-time QoS requirements but are
unable to manage the delivery of functionality under strict
real-time conditions. Therefore a solution must capture the
concepts of control, data, and resource flow relevant to
performance management [8]. In our approach system

performance is managed through CPU and memory
utilization in addition to task interference between multi-
tenant tasks [8], [14].

C. Understanding Real-time Workflows

The control flow patterns that are present in simulation
systems possess limited support by current workflow
technologies. In traditional workflows tasks can be
orchestrated into logical executable sequences with distinct
patterns of: control flow, data flow and routing, exception
handling, interactions, and resource utilization. The presence
of arbitrary cycles and transient triggers from simulators,
however, introduce challenges of non-determinism that
current approaches such as BPEL do not handle [15].
Arbitrary cycles represent cycles in a process that have
multiple entry or exit points whilst transient triggers are
caused by the environment and require immediate handling.

In our approach we aim to mitigate these by using data
driven workflows [16], however, this creates a dependency
on timely delivery of data by the services.

III. METHODOLOGY

This section outlines the approach taken to translate the
control flow described in Figure 1 into a time dependent data
driven SOA workflow. The system stack is discussed
followed by a system architecture. This is followed by the
underlying mathematical foundations and formalisms.

A. System Stack: Domain through SOA to Deployment

Figure 2 demonstrates the SOA levels of abstraction, the
mapping to the underlying platforms on which service
instances execute, as well as the domain models which
include engineering test cases. The platform layer allows the
concrete workflow services to be mapped onto specific tasks
that execute within the computing environment, monitoring
execution delays due to performance interference.

Using the schema proposed in our previous work [8], we
annotate services with their execution state, deadlines
(technical, tolerated, and critical [17]), and probability of
conformance to those deadlines. Platform requirements are
expressed as prerequisites for delivering a specified QoS,
including CPU and memory requirements. We use the
network connection profiles to predict communication lags
between the workflow engine, services, and tasks in the
environment. This activity requires:
1. Methods for using workflows to predict messaging

passing between services and the workflow engine.
2. Techniques for identifying communication between a

given service and other environmental tasks in order to
more accurately predict performance degradations.

B. Proposed System Architecture

The high-level system architecture for our approach -
which we name the Distributed Virtual Integration
Development EnviRonment - is illustrated in Figure 3 with
the following key processes:
1. Publishing a service, capturing the state attributes and

the effect that the service has on those attributes. This
Figure 2: The SOA system stack

captures the underlying platform requirements as well
as the WCET under various configurations.

2. Live monitoring of the system state. The workflow
engine must be alerted by and react to changes in the
execution environment leading to execution delays.

3. The workflow engine encapsulates the following:
orchestration, composition, and execution monitoring.

C. Mathematical Foundations

To support our approach Petri nets are used as the
underlying formalism. We introduce certain fundamental
concepts into our system: singleton service instances, and
states consisting of multiple state attributes in order to deal
with lack of instance information in Petri nets [18]. The
number of instances for a given service are restricted to
allow for more accurate measurement of service state.
Subsequent requests of the service must be queued as can be
seen in Figure 4. Additionally we capture the state attributes

upon which each service operates. Given a known value for
each attribute we detect a change of value and generate a
transient trigger to a specified sub-workflow. A sub-
workflow reflects the service calls that can be executed
without interference from any additional triggers (figure 5).

D. Predicting Execution Performance

Using the set of transient triggers that cause sub-
workflows to execute (and the ordered set of service calls)
we predict the worst case execution time (WCET) of the
workflow. The service functionality is approximated as the
effected change of ‘𝛿’ on ‘y’ due to attribute ‘x’: 𝛿𝑦 = 𝑓(𝛿𝑥)
Given a target ‘y’ and a starting ‘y0’ the change in ‘x’ is
predicted in addition to the worst case number of iterations
of 𝑓(𝑥). Using Djikstra’s algorithm the WCET of the overall
workflow is then estimated.

At the concrete workflow layer the environmental
interference is also considered allowing the workflow engine
to react and improve the ability to adhere to deadlines. Table
1 and figure 5 show the services from the automotive
scenario and the changes which state attributes may invoke.

Figure 4a: Singleton instances of a service. The request

cannot be processed until state ‘P1’ is reached

Figure 4b: Sub-workflow {A→B→C} call upon change of

state attribute ‘x’s value

Figure 3: DIVIDER – DIstributed Virtual Integration Development EnviRonment

Figure 5: Sample sub-workflows.

Table 1: Transmission System, state-transition table

IV. EVALUATION

Through holistic monitoring of the execution
environment DIVIDER aims to provide accurate real-time
performance guarantees of service QoS. The SOA approach
supports the application of fault tolerance and dependability
mechanisms to increase the systems robustness. Our
approach also provides the capability of dynamically
changing the level of abstraction that is used for a specific
service instance. A further advantage of this dynamism is the
ability to adapt workflows and models used in engineering
projects for use in concurrent and future projects. The data
driven approach increases the scalability of the system
through limiting service calls duplication.

The WCET (figure 6) is estimated by analyzing service
execution times with respect to input and output parameters.
The DIVIDER’s workflow engine, therefore, preemptively
reconfigures the workflow and execution environment,
improving the likelihood of a service or workflow meeting
its critical deadline [17], observing and responding to the
likelihood of completion.

V. CONCLUSIONS

This paper has presented a novel approach enabling the
transformation of automotive engineering control flow
models into data-driven service oriented workflows. In the
context of strict real-time constraints in co-simulation of HIL
and DIL domains, we discuss each layer of the SOA system
stack and propose a novel architecture (DIVIDER) focused
on managing the processes of: service publication,
orchestration, composition, and fault tolerance within a
simulation integration environment. We presented
mathematical formalisms allowing the description and
transformation of control and data flows into executable
SOA workflows and highlighted the limitations of existing
technologies and the requirement for further research
utilizing SOA workflow in manufacturing domains.

A. Future Work

The next phase of the work presented here will focus on
experimental evaluation. It will be necessary to explore the
significance of complex asynchronous workflow patterns
from external domain simulators. In this work we must
formally define the semantics for expressing complex
workflows to fully capture the concepts of: engineering
abstraction; inter-service communication; and real-time
execution constraints. It is clear that significant advances are

required to enable dependable handling of real-time
constraints in light of unpredictable and varying
environmental conditions.

ACKNOWLEDGMENT

This work was supported by Jaguar Land Rover and the
UK-EPSRC grant EP/K014226/1 as part of the jointly
funded Programme for Simulation Innovation.

REFERENCES

[1] I. Scheeren and C. E. Pereira, “Combining Model-Based Systems

Engineering, Simulation and Domain Engineering in the

Development of Industrial Automation Systems: Industrial Case

Study,” 2014 IEEE 17th Int. Symp. Object/Component/Service-

Oriented Real-Time Distrib. Comput., pp. 40–47, Jun. 2014.

[2] M. Dooner, J. Wang, and A. Mouzakitis, “Development of a
Simulation Model of a Windshield Wiper System for Hardware

in the Loop Simulation,” in Automation and Computing (ICAC),

2013 19th International Conference on, 2013.

[3] M. Dempsey, G. Fish, and A. Picarelli, “Using Modelica models
for Driver-in-the-loop simulators,” pp. 571–578, Nov. 2012.

[4] D. McKee, D. Webster, P. Townend, J. Xu, and D. Battersby,

“Towards a Virtual Integration Design and Analysis Enviroment
for Automotive Engineering,” in 2014 IEEE 17th International

Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing, 2014, pp. 413–419.

[5] M. P. Papazoglou and W.-J. van den Heuvel, “Service-Oriented

Computing: State of the Art and Open Research Challenges,”
Computer (Long. Beach. Calif)., vol. 40, no. 11, Nov. 2007.

[6] M. Broy, “Challenges in automotive software engineering,”
Proceeding 28th Int. Conf. Softw. Eng. - ICSE ’06, p. 33, 2006.

[7] “Torcs.” [Online]. Available: http://torcs.sourceforge.net/.
[8] D. W. Mckee, D. Webster, and J. Xu, “Enabling Decision

Support for the Delivery of Real-Time Services,” in 2015 IEEE

15th International Symposium on High-Assurance Systems

Engineering, 2015.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,

vol. 56, no. 2, p. 74, Feb. 2013.

[10] W.-T. Tsai, Q. Shao, X. Sun, and J. Elston, “Real-Time Service-

Oriented Cloud Computing,” in 2010 6th World Congress on

Services, 2010, pp. 473–478.

[11] S. D. G. Avila and K. Djemame, “Fuzzy Logic Based QoS
Optimization Mechanism for Service Composition,” in 2013

IEEE Seventh International Symposium on Service-Oriented

System Engineering, 2013, pp. 182–191.

[12] M. Garcia Valls, I. R. Lopez, and L. F. Villar, “iLAND: An
Enhanced Middleware for Real-Time Reconfiguration of Service

Oriented Distributed Real-Time Systems,” IEEE Trans. Ind.

Informatics, vol. 9, no. 1, pp. 228–236, Feb. 2013.

[13] T. Schierz, M. Arnold, and C. Clauß, “Co-simulation with

communication step size control in an FMI compatible master

algorithm,” no. 2, pp. 205–214, Nov. 2012.

[14] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An
Approach for Characterizing Workloads in Google Cloud to

Derive Realistic Resource Utilization Models,” 2013 IEEE

Seventh Int. Symp. Serv. Syst. Eng., pp. 49–60, Mar. 2013.

[15] N.A. Mulyar, “Patterns for process-aware information systems :
an approach based on colored Petri nets,” 2009.

[16] N. Russell, A. H. M. Hofstede, D. Edmond, and W. M. P. Van

Der Aalst, “Workflow Data Patterns : Identification ,
Representation and Tool Support,” pp. 353–368, 2005.

[17] R. Kirner, “A Uniform Model for Tolerance-Based Real-Time

Computing,” 2014 IEEE 17th Int. Symp.

Object/Component/Service-Oriented Real-Time Distrib. Comput.

[18] W. Van Der Aalst, “Pi Calculus Versus Petri Nets,” 2005.

Figure 6: WCET with respect to CPU availability and

required parameter changes

