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Abstract—The ability to reliably distribute simulations across a 

distributed system and seamlessly integrate them as a 

workflow regardless of their level of abstraction is critical to 

improving the quality of product manufacturing. This paper 

presents the DIVIDER architecture for managing and 

maintaining real-time performance simulations integrated 

through SOAs. The described approach captures features 

present in complex workflow patterns such as asynchronous 

arbitrary cycles and estimates the worst case execution time in 

the context of the interfering execution environment. 
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I.  INTRODUCTION 

The capability to perform reduced physical prototyping 
and automation in manufacturing industries is critical as 
industries seek to reduce the time moving through each 
engineering phase [1]. An example of prototyping is the 
integration of electrical control units of automotive sub-
systems with hardware-in-the-loop simulation [2]. A second 
example is human (or driver)-in-the-loop (DIL) systems that 
integrate the control unit models with driving profiles [3]. 
The rapid integration of simulation models with DIL systems 
or HIL test-benches remains a challenge. 

Service-Oriented Architectures (SOA) have been 
demonstrated to support system dependability characteristics 
[4], [5] when integrating distributed systems through the 
likes of ultra-late binding whereby a service is bound ‘just in 
time’. Discrete event simulation (DES) technologies such as 
DDS and HLA use federated approaches which lack the 
ability to assure the delivery of real-time capability for a 
given service.  

In response to this need for rapid automotive simulation 

integration we propose DIVIDER, a novel Service-Oriented 
integration architecture enabling the dynamic integration of 
heterogeneous tools and models, with real-time performance. 
Adherence to strict real-time deadlines is achieved by 
formally modelling the simulation workflows, the data 
exchange patterns, and the underlying resource 
characteristics of the execution platforms. 

We present an automotive use case in section II. In 
section III we demonstrate this as a service oriented problem 
and modelled the performance with respect to the underlying 
network infrastructure. We demonstrate our implementation 
using the automotive scenario in section IV. Finally we 
present our conclusions and future work in section V. 

II. MOTIVATION FOR INTEGRATED SIMULATION 

In the automotive industry the process of designing, 
testing, and manufacturing vehicles is known to take up to 7 
years [6] in part due to limited capability for traversing the 
levels of abstraction seen in engineering lifecycle phases. In 
this section we discuss a motivating scenario, consider the 
challenges of co-simulation, and the related work in real-
time (RT)-SOA techniques with emphasis on real-time 
workflows for system integration. 

A. Motivating Scenario 

Figure 1 depicts a transmission system of a vehicle 
consisting of several components at different abstractions: 

1. Engine and transmission modelled in Simulink. 
2. Transmission control unit using HIL technologies. 
3. Vehicle dynamics as DIL behavior using TORCS [7]. 

The transmission control unit (TCU) and the vehicle 
dynamics run asynchronously from the remainder of the 
system with their own control loops. We control the clock 

 
Figure 1: Motivating Scenario Simulating a Transmission Control System 



rate of the later, but the TCU runs relative to ‘wall’ clock.  
If we were to assume that each system component takes 

the same amount of time to execute, the following simple 
workflow of simulation communications would be observed: 

 Vehicle dynamics →Transmission and TCU 

 Engine →Transmission 

 Transmission → Vehicle dynamics 

If the constraint of discrete events  is removed, as is the 
case with HIL and DIL components, each of the above 
communications may occur at differing times. 

B. The Challenge of Real-time Co-Simulation with SOA 

Current work in RT-SOA has demonstrated that SOA 
cannot guarantee real-time deadlines subject to following 
key limitations [4], [8]: 

 A lack of complete modelling of the execution 
environment results in delayed executions and 
longtails [9]. A preconfigured environment has been 
modeled, but not its runtime changes [10]. 

 Current techniques react to performance degradations 
without knowledge of the environment [11]. 

 Approaches such as the iLand project [12] address 
aspects related to composition the approach is limited 
to dealing with soft real-time deadlines. 

These and other RT-SOA techniques demonstrate that there 
is still an unresolved research challenge in addressing hard 
real-time deadlines with SOA lacking sufficient support for 
the domain of co-simulation. 

When using DES for controlling communication between 
real-time simulations the responsibility of managing 
execution time with respect to wall clock is the responsibility 
of the federate rather than the infrastructure [13]. DES 
approaches describe real-time QoS requirements but are 
unable to manage the delivery of functionality under strict 
real-time conditions. Therefore a solution must capture the 
concepts of control, data, and resource flow relevant to 
performance management [8]. In our approach system 

performance is managed through CPU and memory 
utilization in addition to task interference between  multi-
tenant tasks [8], [14]. 

C. Understanding Real-time Workflows 

The control flow patterns that are present in simulation 
systems possess limited support by current workflow 
technologies. In traditional workflows tasks can be 
orchestrated into logical executable sequences with distinct 
patterns of: control flow, data flow and routing, exception 
handling, interactions, and resource utilization. The presence 
of arbitrary cycles and transient triggers from simulators, 
however, introduce challenges of non-determinism that 
current approaches such as BPEL do not handle [15]. 
Arbitrary cycles represent cycles in a process that have 
multiple entry or exit points whilst transient triggers are 
caused by the environment and require immediate handling. 

In our approach we aim to mitigate these by using data 
driven workflows [16], however, this creates a dependency 
on timely delivery of data by the services. 

III. METHODOLOGY 

This section outlines the approach taken to translate the 
control flow described in Figure 1 into a time dependent data 
driven SOA workflow. The system stack is discussed 
followed by a system architecture. This is followed by the 
underlying mathematical foundations and formalisms. 

A. System Stack: Domain through SOA to Deployment 

Figure 2 demonstrates the SOA levels of abstraction, the 
mapping to the underlying platforms on which service 
instances execute, as well as the domain models which 
include engineering test cases. The platform layer allows the 
concrete workflow services to be mapped onto specific tasks 
that execute within the computing environment, monitoring 
execution delays due to performance interference. 

Using the schema proposed in our previous work [8], we 
annotate services with their execution state, deadlines 
(technical, tolerated, and critical [17]), and probability of 
conformance to those deadlines. Platform requirements are 
expressed as prerequisites for delivering a specified QoS, 
including CPU and memory requirements. We use the 
network connection profiles to predict communication lags 
between the workflow engine, services, and tasks in the 
environment. This activity requires: 
1. Methods for using workflows to predict messaging 

passing between services and the workflow engine. 
2. Techniques for identifying communication between a 

given service and other environmental tasks in order to 
more accurately predict performance degradations. 

B. Proposed System Architecture 

The high-level system architecture for our approach - 
which we name the Distributed Virtual Integration 
Development EnviRonment - is illustrated in Figure 3 with 
the following key processes: 
1. Publishing a service, capturing the state attributes and 

the effect that the service has on those attributes. This  
Figure 2: The SOA system stack 



captures the underlying platform requirements as well 
as the WCET under various configurations. 

2. Live monitoring of the system state. The workflow 
engine must be alerted by and react to changes in the 
execution environment leading to execution delays. 

3. The workflow engine encapsulates the following: 
orchestration, composition, and execution monitoring. 

C. Mathematical Foundations 

To support our approach Petri nets are used as the 
underlying formalism. We introduce certain fundamental 
concepts into our system: singleton service instances, and 
states consisting of multiple state attributes in order to deal 
with lack of instance information in Petri nets [18]. The 
number of instances for a given service are restricted to 
allow for more accurate measurement of service state. 
Subsequent requests of the service must be queued as can be 
seen in Figure 4. Additionally we capture the state attributes 

upon which each service operates. Given a known value for 
each attribute we detect a change of value and generate a 
transient trigger to a specified sub-workflow. A sub-
workflow reflects the service calls that can be executed 
without interference from any additional triggers (figure 5). 

D. Predicting Execution Performance 

Using the set of transient triggers that cause sub-
workflows to execute (and the ordered set of service calls) 
we predict the worst case execution time (WCET) of the 
workflow. The service functionality is approximated as the 
effected change of ‘𝛿’ on ‘y’ due to attribute ‘x’: 𝛿𝑦 = 𝑓(𝛿𝑥)
Given a target ‘y’ and a starting ‘y0’ the change in ‘x’ is 
predicted in addition to the worst case number of iterations 
of 𝑓(𝑥). Using Djikstra’s algorithm the WCET of the overall 
workflow is then estimated. 

At the concrete workflow layer the environmental 
interference is also considered allowing the workflow engine 
to react and improve the ability to adhere to deadlines. Table 
1 and figure 5 show the services from the automotive 
scenario and the changes which state attributes may invoke. 

 
Figure 4a: Singleton instances of a service. The request 

cannot be processed until state ‘P1’ is reached 

 
Figure 4b: Sub-workflow {A→B→C} call upon change of 

state attribute ‘x’s value 

 
Figure 3: DIVIDER – DIstributed Virtual Integration Development EnviRonment 

 
Figure 5: Sample sub-workflows.  

 
Table 1: Transmission System, state-transition table 



IV. EVALUATION 

Through holistic monitoring of the execution 
environment DIVIDER aims to provide accurate real-time 
performance guarantees of service QoS. The SOA approach 
supports the application of fault tolerance and dependability 
mechanisms to increase the systems robustness. Our 
approach also provides the capability of dynamically 
changing the level of abstraction that is used for a specific 
service instance. A further advantage of this dynamism is the 
ability to adapt workflows and models used in engineering 
projects for use in concurrent and future projects. The data 
driven approach increases the scalability of the system 
through limiting service calls duplication. 

The WCET (figure 6) is estimated by analyzing service 
execution times with respect to input and output parameters. 
The DIVIDER’s workflow engine, therefore, preemptively 
reconfigures the workflow and execution environment, 
improving the likelihood of a service or workflow meeting 
its critical deadline [17], observing and responding to the 
likelihood of completion. 

V. CONCLUSIONS 

This paper has presented a novel approach enabling the 
transformation of automotive engineering control flow 
models into data-driven service oriented workflows. In the 
context of strict real-time constraints in co-simulation of HIL 
and DIL domains, we discuss each layer of the SOA system 
stack and propose a novel architecture (DIVIDER) focused 
on managing the processes of: service publication, 
orchestration, composition, and fault tolerance within a 
simulation integration environment. We presented 
mathematical formalisms allowing the description and 
transformation of control and data flows into executable 
SOA workflows and highlighted the limitations of existing 
technologies and the requirement for further research 
utilizing SOA workflow in manufacturing domains. 

A. Future Work 

The next phase of the work presented here will focus on 
experimental evaluation. It will be necessary to explore the 
significance of complex asynchronous workflow patterns 
from external domain simulators. In this work we must 
formally define the semantics for expressing complex 
workflows to fully capture the concepts of: engineering 
abstraction; inter-service communication; and real-time 
execution constraints. It is clear that significant advances are 

required to enable dependable handling of real-time 
constraints in light of unpredictable and varying 
environmental conditions.  
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